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1 Introduction

This paper covers Hartogs Extension Theorem. This result was seminal discov-
ery made in 1906 by German mathematician Friedrich Hartogs. The statement
proves holomorphic functions of several variables can be extended inwards in
a qualitatively different way than holomorphic functions of one variable. This
discovery stands as one of the earliest demonstrations of the substantial inherent
differences between complex analysis in several variables and its single-variable
counterpart.

2 Holomorphicity in Higher Dimensions

Before exploring the theorem, it’s necessary to expand our current theory to
multiple variables. The definitions and proof of the extension principle up to
section 3 follow information outlined in [1, Chapter 1]. Let’s first look at the
single variable case. If U ⊂ C open, and f : U → C. We say that f(x + iy) =
u(x, y) + iv(x, y) is holomorphic iff it is continuous and satisfies the Cauchy-
Riemann equations:

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x

In several variables we say a function is separately holomorphic if the Cauchy
Riemann equations hold for each variable. This is to say Let U ⊂ Cn open, and
f : U → C then f(z1, ..., zn) is holomorphic iff for all i, zi = xi + yi we have

∂u

∂xi
=

∂v

∂yi
,

∂u

∂yi
= − ∂v

∂xi

And we then say f is holomorphic if it is separately holomorphic and continuous.
This turns out to be a natural way to extend the Cauchy-Riemann equations
as it preserves many theorems true in one dimension. One notable example of
this is The Cauchy Integral Formula for Polydiscs.
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2.1 Cauchy Integral Formula for Polydiscs

A natural basis for the topology of Cn is the polydisc. A polydisc centered at
w ∈ Cn with radius ϵ ∈ Rn is defined as

Bϵ(w) = {z ∈ Cn : |zi − wi| < ϵi}

Then to extend Cauchy’s integral formula we have

Theorem 1 (Cauchy Integral Formula for Polydiscs). Let f : Bϵ(w) → C be a
holomorphic function. Then for any z ∈ Bϵ(w)

f(z) =
1

(2πi)n

∫
|ζ1−z1|=ϵ1

· · ·
∫
|ζn−zn|=ϵn

f(ζ1, · · · , ζn)
(ζ1 − z1) · · · (ζn − zn)

dζn · · · dζ1

This follows directly from treating the integrand as a single variable holo-
morphic function of ζn and repeatedly applying the one dimensional Cauchy
Integral Formula. As expected, there is also a high order Integral Formula
which follows from the single variable case. Let α = α1+ · · ·+αn, then we have
that

∂αf

∂α1z1 . . . ∂αnzn
(w) =

α1! · · ·αn!

(2πi)n

∫
|ζ1−z1|=ϵ1

· · ·
∫
|ζn−zn|=ϵn

f(ζ1, · · · , ζn)
(ζ1 − w1)α1+1 · · · (ζn − wn)αn+1

dζn · · · dζ1

2.2 Holomorphic Functions are Analytic

Exactly as with one variable, we can use the Cauchy Integral Formula to show
that holomorphic functions are analytic. Suppose: U ⊂ Cn open and f : U → C
holomorphic. Then

∀w ∈ U,∃Bϵ(w) : f(z) =

∞∑
k1,...,kn=0

ak1,...,kn
(z1−w1)

k1 ·(z2−w2)
k2 · · · (zn−wn)

kn

For all z ∈ Bϵ(w) and

ak1,...,kn =
1

k1! · · · kn!
· ∂kf

∂k1z1 . . . ∂knzn
(w)

This allows for many similar results as from the lower dimensional case. The
proofs for the Maximum Principle and Identity Theorem (for open subsets)
transfer without much change.

3 Hartogs Extension Theorem Proof

Before exploring the statement and proof of Hartogs Theorem in depth, we must
establish one last lemma.
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Lemma 1. Let U ⊂ Cn be open and V ⊂ C be an open neighbourhood of the
boundary ∂Bϵ(0) ⊂ C. If f : V × U → C is holomorphic then

g(z) := g(z1, . . . , zn) :=

∫
|ζ|=ϵ

f(ζ, z1, . . . , zn)dζ

is a holomorphic function on U .

This result allows us to classify functions expressed as an integral of a known
holomorphic function as holomorphic which will be a critical step in the proof
of Hartogs Theorem.

Proof. Let z ∈ U , ζ ∈ ∂Bϵ(0) ⊂ C. Clearly (z, ζ) ∈ V × U . We can then
take advantage of f being analytic to define a power series on some polydisc
Bδ(ζ)(ζ)×Bδ′(ζ)(z) ⊂ V × U .

We also have that ∂Bϵ(0) is compact and we can form an open cover with⋃
ζ∈∂Bϵ(0)

Bϵ(0) ∩Bδ(ζ)(ζ)

Therefore we can generate a finite subcover {Bϵ(0) ∩Bδ(ζi)(ζi)}ni=1 with
ζi ∈ ∂Bϵ(0) and δ(ζi) ∈ R. Then we can select αi < δ(ζi) to form a finite ”near”
subcover. That is to say {Bϵ(0) ∩Bαi

(ζi)}ni=1 is pairwise disjoint and

∂Bϵ(0) =

n⋃
i=1

(∂Bϵ(0) ∩Bαi
(ζi))

This is visualized below

Bϵ(0) Bαi
(ζi)

As there are only finitely many points in Bϵ(0) that are not in the union of
discs, we have that

g(z) =

∫
|ζ|=ϵ

f(ζ, z1, . . . , zn) =

n∑
i=1

∫
|ζ|=ϵ, |ζi−ζ|<αi

f(ζ, z)dζ
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Recall however that f is analytic. Its power series converges uniformly and
absolutely on Bαi(ζi) for fixed w ∈ U . Thus ∀w ∈ U, we can locally expand f
around (ζi, w). Putting this all together yields:

g(z1, . . . , zn) =

n∑
i=1

∫
|ζ|=ϵ, |ζi−ζ|<αi

f(ζ, z)dζ =

n∑
i=1

∫
|ζ|=ϵ, |ζi−ζ|<αi

∞∑
k0,...,kn=0

ak0,...,kn
(ζ − ζi)

k0 · (z1 −w1)
k1 · · · (zn −wn)

kndζ =

n∑
i=1

∞∑
k0,...,kn=0

[∫
|ζ|=ϵ, |ζi−ζ|<αi

ak0,...,kn
(ζ − ζi)

k0dζ

]
·(z1−w1)

k1 · · · (zn−wn)
kn =

∞∑
k0,...,kn=0

[
n∑

i=1

∫
|ζ|=ϵ, |ζi−ζ|<αi

ak0,...,kn
(ζ − ζi)

k0dζ

]
· (z1 −w1)

k1 · · · (zn −wn)
kn

We can clearly see g is holomorphic through its power series.

With the preliminary established we can now move on to the statement and
proof of Hartogs Theorem

Theorem 2 (Hartogs Extension Theorem). Suppose ϵ = (ϵ1, . . . , ϵn) and ϵ′ =
(ϵ′1, . . . , ϵ

′
n) such that for all i : ϵ′i < ϵi. Then if n > 1 then any holomorphic

function f : Bϵ(0) \ Bϵ′(0) → C can be uniquely extended to a holomorphic
function f : Bϵ(0) → C.

Proof. There is δ > 0 such that V := {z : ϵ1 − δ < |z1| < ϵ1, |zi̸=1| < ϵi} ∪
{z : ϵ2 − δ < |z2| < ϵ2, |zi ̸=2| < ϵi} ⊂ Bϵ(0) \ Bϵ′(0). Thus f is holomorphic on
V . If we fix w = (w2, . . . , wn), we can think of fw(z1) = f(z1, w2, . . . , wn) as
a holomorphic function function of z1 on {z : ϵ1 − δ < |z| < ϵ1}. Thus we can
write fw(z1) using it’s Laurent Series.

fw(z1) =

∞∑
−∞

an(w) · zn1

with

an(w) =
1

2πi

∫
|ζ|=ϵ1−δ/2

fw(ζ)

ζn+1
dζ

and by Lemma 1, we have that an(w) is holomorphic on B(ϵ2,...,ϵn)(0). We also
have that fw(z1) is holomorphic on { z : |z| < ϵ1} when we fix w such that
ϵ2 − δ < |w2| < ϵ2. Thus the Laurent series of f on the region is really a power
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series, and an(w) = 0 for n < 0. But by the Identity Theorem, we have that
an(w) = 0 for all n < 0.This allows us to define our holomorphic extension

f̂(z, w) =

∞∑
n=0

an(w) · zn1

We have that an(w) is holomorphic thus achieves a maximum on the bound-
ary. Furthermore, the series converges uniformly on the edges, so it most also
converge uniformly as we extend the function inwards. It’s also clear that our
extension agrees with f on Bϵ(0) \B′

ϵ(0). And this extension is trivially unique
due to the Identity Theorem.

Here is a rough diagram to aid the proof

Bϵ(0)

an(w) = 0, n < 0

z1

w

The proof first establishes that we can write fw(z1) as a Laurent Series. But
as we can see in the picture, near the edge of Bϵ(0), we have fw(z1) is defined
on a disc, and thus the negative terms of the Laurent series vanish there. How-
ever, we know that the Laurent coefficients are holomorphic in w, and so by the
identity theorem, the negative terms must vanish everywhere. Then we can use
resulting the power series to holomorphically extend inwards.

3.1 Contrasting with single variable functions

It is important to note that this result only holds when n is strictly greater than
1. We can see that this is not at all the case in one dimension with a function
like f(z) = 1/z. It can clearly be holomorphic on an annulus around 0, but
there is no way to holomorphically extend it.

If we try extending this counterexample into two dimensions: f(z1, z2) = 1/z1
we see that instead of a point as before, there is now a singular curve (0, z2)
which will intersect any annulus containing it. Trying a bit harder, we can see
f(x, y) = 1/(x2 + y2) has an isolated singularity at (0, 0) for real x, y. Translat-
ing this to f(z1, z2) = 1/(z21 + z22) fails however because z2 is no longer positive
definite. Plugging in z2 = i · z1 still yields a curve of singularities.
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This reveals a rather significant qualitative difference between holomorphic func-
tions of one variable and several. Both the (non removable) singularities and
zeros for high dimensional holomorphic functions must be unbounded. If there
was a function with bounded singularities, it could be translated to the origin,
and then would directly be a counterexample Hartogs Theorem. If there was a
holomorphic function with bounded zeros, then the previous process could be
applied to it’s inverse. As we can see Hartogs Theorem turns out to be quite
strong already, but it can actually be further strengthened.

4 Stronger Claims and Implications

One obvious weakness of the Extension Principle as stated is that it is only
defined on annular polydiscs. This can be broadened to the more general state-
ment.

Theorem 3. Let Ω ⊂ Cn, (n > 1) be open, connected, and bounded. Let K ⊂ Ω
be a compact subset, such that Ω \ K is still open and connected. Then every

holomorphic function f : Ω \ K → C has a unique holomorphic extension f̂ :

Ω → C such that f̂ |Ω\K = f

This conveniently generalizes Bϵ(0) to any bounded domain within Cn and
the undefined region within to be any compact subset still preserving connect-
edness. The proof of this statement turns out to be significantly more involved
than the case involving polydiscs. You can find two different techniques for
approaching the proof in [2] and [3, Theorem 7]. Very roughly speaking though,
[2] proves this by working locally and gluing many small extension together. [3]
approaches the statement using partial differential equations in order to sidestep
the topological challenges addressed by [2]. Both are worth looking at. This
stronger definition is also equivalent to the following

Theorem 4 (Bochner’s Extension Theorem). Let Ω ⊂ Cn, (n > 1) be open,
connected, and bounded and Cn\Ω connected. Then every holomorphic function
defined on an open neighborhood of the boundary, U ⊃ ∂Ω, f : U → C, has a
unique holomorphic extension f̂ : Ω → C such that f̂ |U = f

Proof. To show Theorem 3 implies Theorem 4, let Ω be open, connected and
bounded and U ⊃ ∂Ω be open. Ω \ U must be closed and bounded, thus com-
pact. We can also see that Ω \ K = Ω ∩ U is open, connected and bounded.
Thus we can apply Theorem 3, getting a holomorphic extension to any f .

To show Theorem 4 implies Theorem 3, let Ω be open, connected and bounded
and K ⊂ Ω be compact, such that Ω \ K is still open and connected. As Ω
open, there is an open neighborhood, U : K ⊂ U ⊂ Ω. U is open thus doesn’t
contain it’s boundary points, yet U contains all points of K, so we clearly have
∂U ⊂ Ω \K. Finally we can apply Theorem 4 to Ω \K as Ω is open. connected
and bounded, Cn \Ω is connected. Therefore any holomorphic function defined
on Ω \K can be holomorphically extended to Ω.
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Again this is Theorem is unique to holomorphic functions of several vari-
ables. There is generally no expectation of being able to extend holomorphic
functions of one variable, and the theorems that do allow extensions have much
stronger requirements. Riemann’s Removable Singularity Theorem for instance
requires f to be locally bounded in order to extend to just a single point.

Bochner’s Extension Theorem highlights a general theme of holomorphic func-
tions, namely that their behavior near the boundary dictates their global be-
havior on the interior. The Maximum Principle tells us that the maximum
modulus of a holomorphic function must occur on the boundary. Stronger yet,
Cauchy’s Integral Formula tells us that knowing the values of a holomorphic
function on the boundary of a (poly)disc entirely dictate the values in the inte-
rior. In a similar vein, Bochner’s Extension Principle states that merely knowing
a holomorphic function is defined on an arbitrarily small neighborhood of the
boundary is enough to know it can be holomorphically extended into the interior.

Bochner’s Theorem still requires a function to be defined on a full neighbor-
hood of ∂Ω. What if instead we only have a function defined on ∂Ω? The
main issue here is that the current definition of being holomorphic fails. Being
defined on a neighborhood of the boundary allows for all partial derivatives to
be taken, whereas only being defined on the boundary restricts the direction
you can take limits. To get around this we instead require that f satisfy the
tangential Cauchy-Riemann equations. You can think of this as requiring f to
be holomorphic within the tangential directions it is ”allowed to move”. Such
a function is called a CR function. This leads us to our final theorem.

Theorem 5. Let Ω ⊂ Cn, (n > 1) be open, connected, and bounded. Let ∂Ω be
C1 and connected. If f : ∂Ω → C is a CR function, then there is an extension
f̂ : Ω → C such that f̂ is continuous on Ω, holomorphic on Ω, and f̂ = f on
∂Ω.

The rigorous background of CR functions and proof of this statement are
beyond the scope of this paper but more detailed explanations can be found in
[3, Theorem 9]. Regardless of not having the tools to prove it, this result feels
like a rather natural continuation of Bochners Extension Theorem as we could
already make U ⊃ ∂Ω arbitrarily thin. Taking the next step to Theorem 5 and
only requiring f be defined on ∂Ω further emphasizes an important principle
in complex analysis: the way a holomorphic function acts on the boundary
determines its behavior in the interior.

5 Conclusion

In this paper’s exploration of Hartogs Extension Theorem, we’ve proved the
basic result and highlighted its fundamental importance in the theory of several
complex variables. Our discussion, spanning from foundational concepts to
advanced generalizations, illustrates the theorem’s pivotal role in understanding
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the unique properties of multi-variable holomorphic functions. Hartogs theorem
and its logical extensions underscore the significant relationship between the
boundary behavior of holomorphic functions and their interior behavior - a
recurring theme within complex analysis.
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