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1 Introduction to Problem

I was asked this question in a job interview, and it stumped me at the time.
So afterwards, I decided to solve it. Let X, X5, X3... be independent, uni-
formly distributed, random variables on the interval [0, 1]. What is the expected
number of variables required to reach a cumulative sum greater than 17

2 Initial Approach

Let’s first break this problem down by tackling a simpler question. What is the
probability that the sum X3 + --- + X,, < 1. First start by defining a different
random variable Y,, == X7 + X5+ ---4+ X,,. We can now express the probability
that the sum requires at least n variables as P(Y,,—1 <1 and Y, > 1). This is
the probability that the sum of the first n — 1 variables is less than 1 and the
sum of the first n variables is greater than 1.

Now we can toy around with simple cases to see how it might motivate a general

case. Take n = 2 for example. We can calculate P(Y; <1 and Y3 > 1) using
an integral.
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Its important to note the integral over the entire probability region (an n di-
mensional unit cube) is 1, so there is no normalization needed. We get the
starting integral by integrating first over the region where X; < 1 and then



over the region where X; + Xs > 1. Trying with n = 3 we can calculate
P(Y; < 1 and Y3 > 1) by integrating
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The first two integrals represent the region where X; + X5 < 1 and the final
integral represents when X; + X2 + X3 > 1. By calculating the first integral in
the expression we get
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Then finishing the evaluation we get
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Now with an intuition for some of the calculations, we can try approaching the
general case.

3 General case

To calculate P(Y;,—1 < 1 and Y;, > 1) we can first integrate over a region where
X1+ Xo+ -+ 4+ X,—1 < 1 and then have a final integral over the remaining
region where X; +--- + X, > 1. The result is this:
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This expression is long, but we can first begin by evaluating the first integral,
and we see a similar pattern to the first two examples.
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Now we have made some progress because we can use the linearity of integration
to split up this integral into many pieces.
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Let’s try and evaluate just one piece. We can further split up one of these pieces
for a given xj by looking at the kth integral.
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Now by further evaluating we can notice a pattern.
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Then with the u substitution of u = (1 —x; — -+ —x,_2) and du = —dx,_2 we
can get

r1=1 Tr=1l—T1——Tp_1 Tp—2=1l—T1——Tpn_3
[ | s
11:0 :Ek:O ZL‘W,_QZO
r1=1 Tp=l—-21——xp_1 Tp_3=1—T1——Tpn_4 1
:/ / xk/ —Zu? dA
x1:0 ZEk:O CEn73:O 2

Tp_1=l—z1——Tn_2

dA

x1=1 Tp_3=1l—x1— - —Tp_4 1 Tp_2=l—T1——Tp_3
:/ / _,(1_%_..._3;”_2)2 dA
z1=0 Tn—3=0 2 Tp—2=0
Notice however, when we let x,_5 =1 — 27 —--- — x,_3 the entire expression
is 0. Therefore when we evaluate the u substitution entirely we get
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This can be repeated until we reach the zj integral. This yields
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This can further be evaluated by the same u substitution u = (1 —x1 —- - — xx)
and du = —dx. We can also rewrite xp = (1 — 21 — -+ - — x,_1) — u. This yields
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Substituting back in the value of u gets
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Something very convenient happens again. When xy =1 — 27 — -+ — xp_1 the
entire expression evaluates to 0. And thus by letting x; = 0 we get that the
result is
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Plugging this back into the integral expression we get
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Using the same iterative u substitution technique as we began with, the rest

simplifies down to
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Great progress, but this is only a piece of the final result. Recall that our
expression for P(Y,,_1 <1 and Y, > 1) was
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Note that our result for x; was actually independent of &, thus our final result

is
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Checking for n = 2 and n = 3 yield % and % respectively confirming the results
we already calculated.



4 Expected Value

Now that we have a precise probability for the sum to require at least n values,
we can calculate the expectation.
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The sum starts at 2 because there is 0 probability that the first term is greater
than 1. Then we can simplify the result by shifting n back by 2 resulting in
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Which is the Taylor series expansion of the constant e.



